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Abstract

Knowledge of programming plans, which are stereotypical code patterns that achieve a goal, is key to

programmers’ ability to write programs. When computing educators are armed with a set of programming

plans, they can take advantage of instructional techniques that may accelerate their students’ learning.

However, plan identification is an effortful process that is not well documented in prior work. Moreover,

existing sets of plans are primarily drawn from introductory programming content, so plan-based instructional

techniques are not yet possible for many programming application domains, like web scraping, data analysis,

or machine learning model creation. Through interviews with ten computing educators who have identified

novel plans, we describe the current plan identification process, including the plan components instructors

value, the characteristics by which plans are judged, and key challenges. Building on these results, we present

an LLM-supported plan identification pipeline and evaluate it in comparison to a set of expert-identified

plans primarily in the web scraping domain. We also extrapolate this pipeline for other domains of interest

to non-majors including data processing, visualization, and machine learning. Due to the absence of pre-

identified programming plans in these domains, we evaluate these plans against code from StackOverflow

and Github due to their widespread use. We find that using LLMs as a supportive tool in the design of an

automated plan identification system to identify plans that meet the success criteria established by computing

education researchers is a promising avenue. Our work provides important implications for automating

plan identification, including where and how processes may be automated, and how these processes can be

augmented with an instructor in the loop.
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Chapter 1

Introduction

Programming plans have long been considered a significant aspect of programming knowledge [1], [2]. These

plans, also known as programming patterns [3], [4] or code idioms [5], are short, stereotypical solutions that

can be adapted for solving different types of problems. The ability to recognize programming plans in code

differentiates novices from experts [1], and knowledge of plans seems to underlie effective code writing [6].

Moreover, instructional strategies successfully utilize plans to improve the problem-solving and abstraction

skills of students (e.g. [4], [7], [8]). However, despite the rich set of works describing plans from introductory

programming content (e.g. [3], [4], [9]–[11]), plans have rarely been used to support instruction beyond the

introductory level. Yet, recent work has shown that domain-specific plans can be effective in teaching and

motivating a variety of students when they learn application-focused topics, like CS majors learning software

testing [12] and conversational programmers learning web scraping [7] (see Figure 1.1). These promising

results imply that identifying plans in a wider variety of domains can support diverse learners to reach a

greater range of learning objectives.

An obstacle to identifying domain-specific plans is the opaqueness of the plan identification process. Most

works that identify plans in introductory programming do not describe their process and omit crucial details

necessary to replicate the process in another domain. A more transparent process for plan identification

may help experts identify plans in application-focused domains to support learners interested in different

applications. Particularly, understanding which components of a plan are most important for instructors,

which characteristics instructors look for when evaluating programming plans, and what are the primary

challenges during plan identification would unravel the current plan identification process and support the

identification of domain-specific plans.

Figure 1.1: A programming plan educators have already identified in the domain of web scraping with
BeautifulSoup [7].
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Figure 1.2: An overview of the stages of our study.

Another reason for the lack of domain-specific plans is the tedious and effortful nature of the identification

process. While there have been some efforts to automatically identify common code pieces, these approaches

do not consider pedagogical aspects of identified constructs [5], [13], [14] and likely do not meet the needs of

instructors. However, with the latest developments in technologies such as large language models (LLMs)

that can effectively explain and generate code [15], it might be possible to design tools to reduce the workload

of instructors working on plan identification and enable plan identification beyond introductory content.

To address these concerns for identifying domain-specific plans, we seek the answers to two research

questions:

• RQ1: What are the components, characteristics, and challenges relevant for the plan identification

process?

• RQ2: How can LLMs (e.g. ChatGPT) support the identification of domain-specific plans?

To answer RQ1, we conducted semi-structured interviews with 10 computer science education researchers

with varying levels of experience with programming plans. To answer RQ2, we proposed a design prototype for

an LLM-powered domain-specific plan identification pipeline and evaluated it via quantitative and qualitative

metrics based on findings from our interview study. Our work reveals that plan identification requires various

kinds of expertise, and automated systems powered by LLMs can support plan identification. Our key

contributions are as follows:

• A specific description of components of programming plans and criteria for their evaluation.

• A deep understanding of the needs and challenges of computing educators in their current plan

identification process.

• An exploratory analysis of an automated plan identification pipeline and design implications for a

sociotechnical system supported by LLMs for plan identification.
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Chapter 2

Related Work

2.1 Improving instruction with programming plans

Informed by schema theory, Elliot Soloway and his students first described programming plans in the 1980s

[16]–[18]. They defined plans as chunks of code that achieve particular goals, like guarding against erroneous

data or summing across a collection. They provided evidence that knowledge of plans can represent progress

in learning programming [19], and student errors could be explained in terms of misunderstanding plans

[20], [21] and plan composition errors [22]. Inspired by this, educational designers have used programming

plans as scaffolding (assistance for learners [23]) to enable novice programmers to write more code than they

would be able to on their own and designed plan-based curricula and tools [24], [25]. A variety of classroom

instructional techniques organized instruction on common patterns [4], [26], [27], used plans to inform the

design of instruction [28], and evaluated students’ expertise on their ability to recall plans.

However, until recently, these instructions were confined to introductory courses as most well-established

sets of plans were identified from introductory programming content (e.g., [3], [11], [29]). To better support

novice learners meet their learning objectives in a specific application area, we need to identify programming

plans in domain specific contexts. A common construct, namely domain-specific languages (e.g. Boa for

mining software repositories [30]), are frameworks designed to write code in application-focused areas in

order to facilitate programming learning for students with no prior programming experience [31]. While

this approach intends to scale the use of programming in application-focused domains for a novice audience,

[32], they lack the scaffolding needed for novices to get equipped with their use. Specifically, due to the

lack of clarity of the subgoals involved in crafting a solution to the problem, student oftentimes find it

challenging to write code for addressing the problem at hand. The design of environments that provide visual

block-based support for domain-specific programming languages [33] similar to block-based programming in

introductory computer science [34] using environments like Scratch [35] would come with the same challenges

as in block-based programming. Frequently, block-based programming languages do not involve writing

code but rather putting blocks or elements together to design a solution to the problem. It is important to

note that this leads to the perception that programming is difficult. It also creates a larger gap between

student learning and the real world of programming that mostly involves writing code from scratch. [36]. In

light of these shortcomings, recent work proposed the purpose-first programming approach [7] to support

conversational programmers [37], [38], showing that plan-based scaffolding can support learners with diverse

learning goals. While earlier systems focused on supporting introductory programming learning, purpose-first
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programming included plans drawn from more applied coding topics, like web scraping, and made such

programs accessible to novices. With a more efficient plan identification process, we can more easily extend

such promising approaches to new programming application areas.

2.2 Identifying patterns in programs automatically

In software engineering, work in the mining of code idioms [5], [13], [14] uses statistical natural language

processing to extract semantically meaningful pieces from a code corpus. This approach has been extended

to support program synthesis using these idioms [39]. In addition, techniques for representing code in ways

that facilitate machine learning methods (e.g. code2vec [40]) expand the toolbox for code clustering methods.

While these systems utilize a large amount of real code on platforms like Github and StackOverflow, they do

not include the same pedagogical concerns experts consider when identifying programming plans, limiting

their applicability to instruction. Understanding these pedagogical concerns better can also enable these

systems to be incorporated into instructional processes.

Recent work in HCI has displayed commonalities in code samples in ways that support learning and

instruction. Glassman et al. clustered student programming assignment data to reveal common learner

misunderstandings in a way instructors can view [41]. Glassman et al. visualized varieties of API calls from

StackOverflow data [42] to reveal common use cases to learners [43]. While these patterns can aid instructors,

these works do not attempt to produce high-level code plans abstracted from particular implementations.

Forming concrete guidelines on how experts perform this abstraction process can inform the design of systems

that support instruction.

2.3 Exploring code interpretation capabilities of large language

models

While large language models (LLMs) have not been used for identifying programming plans, their capabilities

at processing code input have been shown through multiple studies. In addition to solving programming

exercises of varying topics and difficulty with high accuracy [44]–[46], LLMs have been employed to generate

programming exercises in custom contexts [47] and novel assignment types that produce code using student

explanations as input [48], [49]. Moreover, using LLMs to generate code explanations produced simpler

and more accurate explanations compared to student submissions [50]. Jury et al. further evaluated the

code explanation capabilities of LLMs by generating worked examples, which are step-by-step solutions

used for demonstrating the problem-solving process of an expert to a student, through expert assessment

and a large-scale user study, showing that LLMs can not only generate code but also generate explanations

on different levels of abstraction to explain the program to a novice learner [15]. However, some studies

also observed that LLM-generated code may include structures unfamiliar to novices [15] or fail to follow

industry best practices [51]. Moreover, in addition to the downsides of domain-specific languages proposed

in the prior section, the primary objective of identifying plans and designing a system is to support the

identification of these helpful learning constructs at scale to address the needs of a diverse set of learners.

These learners, namely conversational programmers, desire to learn about specific application-focused domains.

Domain-specific languages are also effortful to design and with the rise in the applications of computer science,

it becomes challenging to create such languages for every possible area. The design of an LLM-supported
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identification system would be more sensitive to the changes in the world of computer science including

up-to-date datasets for identification and evaluation of programming plans leading to an easier approach for

scaling the creation of programming plans motivating faster and better learning experiences for students.
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Chapter 3

Interview Study Methodology

To understand the current process of programming plan identification by educators, we conducted semi-

structured interviews with ten computing instructors (see Table 3.1) who had performed plan identification as

part of their prior work. Mirroring the approach of Fowler et al. [52], we recruited instructors who authored

a computing education research publication where plan identification was a part of their methodology or

results. Computing education researchers possessing experience working with programming plans are an ideal

source to learn instructional best practices because this population consists largely of instructor-scholars:

those who not only teach computing but are also informed by research and recent practices in computing

education. This allowed us to discuss their concrete programming plan identification experiences focusing on

their pedagogical perspectives, rather than have participants speculate on the process in general.

We conducted online semi-structured interviews that ranged between 30 minutes and one hour. We first

asked questions about the participants’ backgrounds to collect basic demographic information and understand

the extent of their experience teaching and researching with programming plans as well as their understanding

of these plans. Next, we asked participants to describe the specific activities they undertook to identify

programming plans in the paper they authored. This included questions about what they were looking for

when they identified programming plans, the resources that were involved in this process, and the procedures

they undertook. We also posed questions to gain insights into the difficulties the interviewees faced when they

were identifying programming plans. Lastly, we prompted a discussion about how they would attempt to

Table 3.1: Participant Demographics.

Years in CSEd
Research

Years in Plans
Research

Years in CS
Instruction

Teaches
CS1?

Uses Plans
in Instruction?

Industry
Experience?

P1 10-20 1-3 10-20 Yes Yes Yes
P2 5-10 4-6 10-20 Yes Yes No
P3 5-10 4-6 10-20 Yes Yes Yes
P4 1-5 1-3 5-10 No Yes Yes
P5 1-5 1-3 1-5 Yes Yes No
P6 10-20 1-3 20+ Yes Yes Yes
P7 5-10 4-6 20+ No Yes Yes
P8 1-5 1-3 5-10 Yes Yes Yes
P9 20+ 20+ 20+ Yes Yes No
P10 20+ 20+ 20+ Yes Yes Yes

6



identify programming plans in a new topic area they were unfamiliar with to gather these instructor-scholars’

perspectives for design implications.

We used a transcription service to transcribe the video recordings and used Dedoose, a qualitative analysis

software, for coding the transcripts with an inductive, reflexive thematic analysis process [53]. During coding,

we highlighted the connections between the beliefs of our participants and their choices in the pattern

identification process.
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Chapter 4

Interview Study Results

The educators we interviewed described a variety of details about the approaches they utilized and the

objectives they hoped to reach during the plan identification process. They also shared challenges and

suggestions for potential improvements.

Note that while we use the term “programming plan” in this paper to clarify our focus on relatively small

coding chunks rather than design patterns or architectural patterns, many of the educators we spoke with

used “plan” and “pattern” interchangeably, or even preferred the term “pattern.”

4.1 Components of Programming Plans

Our participants looked for a variety of items when they identified programming plans. In this section, we

discuss all plan components mentioned by two or more of the instructors we interviewed (see Figure 4.1 for a

summary).

4.1.1 Name

For some instructors, programming plans must have a name. As P5 put it, “[plans are] useful common

problems that people name.” The plan name is often reflective of what the plan accomplishes. P6 believed

that plans could have “generic names” or “problem-specific names”, but that the problem-specific names

CountName:

Changeable Areas:

counter = 0

for item in collection:

    if item % 2 == 0:
        counter += 1

# share result
return counter  

Count

Find how many items meet a criteria

Name

Goal

Solution (in code) 

changeable areas 

counter = 0
for item in collection:
    if ...:
        counter += 1
... counter # share result

Solution:

Find how many items meet a criteriaGoal:

......

Figure 4.1: The components of a programming plan mentioned by our interviewees, illustrated with a common
introductory programming plan.
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better supported students during problem-solving: “it was also important for [students] to reflect, ‘Okay, if

I need a counter [plan], what exactly am I counting here?’ ” The name connects the plan to the types of

problems it can solve.

4.1.2 Goal

Some of our participants indicated that plans should have goals. This was a key part of the plan for P3, who

believed “a plan has to accomplish a specific goal. That was already the starting point.” For some, a goal

emphasizes the deep, underlying structure of certain problem types, even if implementation details differ in

practice. This led one instructor to solely focus on goals during plan identification, because “according to the

programming language you have, the plan can vary. There might be big differences [in syntax], but the goal is

the same.” (P2)

4.1.3 Solution

For nearly all our participants, a programming plan included some type of solution to the problem it typically

solved. These solutions could be in a variety of forms. Two of our participants thought that implementation

in a specific programming language is a key part of a plan. For example, P3 said, “The code cannot be

detached from the way the plan is built.” P1 agreed, stating “In order to code in that language in the best

way, it’s important to understand some of those language-specific patterns.”

In contrast, some participants used pseudocode or natural language to describe solutions, in the interest

of communicating ideas that would potentially cross languages. In addition to language-specific plans, P1

argued that “you should be able to explain them abstractly, independent of the syntax of the language” and

thus “in pseudocode you should be able to explain what’s going on and talk about what it does and why it

gets used.” However, for P6, writing plans in pseudocode got in the way, and they re-wrote plans in natural

language: “It’s really not about the notation...so, for the patterns I went really for just plain English.”

4.1.4 Changeable Areas

Two of our participants used a template-based approach where specific changeable areas in the plan are

highlighted. P1 described their approach: “we use pseudocode, so we with dot, dot, dot on all the [changeable]

parts just to highlight, here’s the pattern part”. Similarly, P6 believed that it is crucial to have “clear

instantiation points” in the solution for the learners while designing plans.

4.2 Characteristics Used to Judge a Good Programming Plan

While different educators had different ideas about what they value in a “good plan”, we found four themes

common among many of our participants: commonality, usability, the level of abstraction, and appropriateness

for learning goals.

4.2.1 Plans Should Be Common

All but one of the educators we spoke with considered the frequency with which a programming plan is used

in practice to be a measure of its worth. However, there were differences in how they judged commonality

and how much value they gave to this measure.
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Some respondents believed that the definition of a programming plan itself mandates that any plan

be frequently employed in standard practice. In other words, the commonality of programming plans is

“inevitable” (P4).

For it to be a “pattern” it has to be seen in the world. [Plan identification] isn’t about creativity,

but about exploration and recognition. (P10)

While the instructors we interviewed generally agreed that a good plan should be used frequently in

practice, they had different ideas about the type of practice that should be used for this measurement. One

of our interviewees urged caution in what types of programs were used to judge commonality:

It’s not something where you necessarily want to have a popular vote on things. Just because

more people eat at McDonald’s than a fancy restaurant doesn’t mean that McDonald’s is better

food. (P1)

P1 described two types of commonality, one that draws only from the classroom, and one that draws from

professional and other programming practice: “One is, do we see it a lot in the textbooks and or assignments

that we looked at? There’s another kind of common, which is when I think about all the programming that

happens in the world, is it important in that context also?” P6 chose plans based on their frequency in class

assignments: “I was not going to go for patterns if I can’t immediately think of at least three or four exercises

or questions for the assignments that would need this pattern.”

4.2.2 Plans Should Be Usable

Most of our interviewees believed a critical quality of a programming plan is that it can be easily applied to a

variety of situations that share similar goals. P10 said, “The solution has to be easy to put into practice (with

practice).” This requires that the plan be adaptable in a way that the learner understands. “Understanding

how to tune it should not be the issue” (P2).

The importance instructors placed on usability stemmed from their reasons for teaching with programming

plans in the first place. They believed that programming learners often lack the ability to interpret a problem

statement and to adapt a similar solution without guidance. As P7 said, “The bridge between there [the

problem] and code is too large.”

A good programming plan supports students to span this gulf. P1 described plans as an “important step

between understanding the syntax of a language and understanding how to do problem solving.” P9 agreed,

saying “knowing the pattern helps getting to a good solution, an expert solution.” In the same way that

interface designers narrow the “gulf of execution” between a user’s goal and how to achieve that goal [54],

instructors believed that programming plans should facilitate learners’ ability to design and implement

programming solutions.

4.2.3 Plans Should Have the Right Level of Abstraction

Finding the balance between concrete and general was key for most of our interviewees when identifying

programming plans. Pinpointing the right level of abstraction or “granularity” (P3) achieves potentially

conflicting goals: ensuring that the plan works across multiple contexts, while also providing sufficient concrete

detail to implement the plan in practice.
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If you list too many [plans], you lose the idea of the schema, the schemata to it. If it is too

abstract, you cannot use it in practice. Students have difficulties in grasping the idea and using

them. (P2)

P2 cautioned that plans must be applicable in multiple contexts, saying “If it is too specific, it’s not

recurrent enough.” P2 also reasoned that it is essential to find a “good trade-off” so that students don’t think

about plans “as a recipe expected to be ready to be used.”

The educators we interviewed believed that the right level of abstraction was impacted by the intended

audience for the programming plan. Most participants thought it is essential to “teach novices and experts

patterns very differently” (P1). This is because “advanced students can handle more abstract explanations”

(P10).

P1 believed that as students gather more expertise, it could be useful to then introduce “more advanced

defined patterns” and emphasize “the wrong ways to do things and why this solution is better”. By contrast, a

good plan for beginners is relatively “concrete”, and focuses on “how you solve this problem”. P3 shared that

“it doesn’t make sense to talk about plans in general” since for “high school students, even declaring a variable

is a plan and later they move on to complex plans”.

4.2.4 Plans Should Be Appropriate for Learning Goals

One of our interviewees highlighted that from a “teaching perspective” (P8), a quality plan should be

appropriate to the learners’ goals. They elaborated, “if you’re in the beginner level, you definitely want to

understand what is a programming language, how do I do stuff?” For those learners, better plans illustrated

the operation of language features, to “help [them] build an idea of [their] notional machine” [55]. However, for

more advanced students, “you probably want to prepare for industry,” so ideal plans would be representative

of the “most recent programming paradigms” (P8).

4.3 The Process of Plan Identification

Our interviewees took diverse approaches to identify programming plans. While some educators focused on

techniques that helped them gather insight from common practice, others relied on their personal expertise.

Most of the educators we interviewed leveraged a combination of both these strategies.

4.3.1 Viewing Programs and Problems

Echoing the belief that “patterns are ”mined” from the practice” (P10), many educators looked at some

sort of code, problem statement, or instructional material during their plan identification process. More

specifically, they looked at GitHub repositories (P7), programs written by industry professionals which may

or may not include their own code (P7, P8, P10), textbooks (P1, P2, P5), and other instructional material

including lecture notes, assignments, student programs, and testing material (P1, P2, P4, P6, P9).

“There was a lot of just paging through textbooks, either physical or digital versions and just

looking at code, just trying to see if there’s something we haven’t seen before.” (P1)

As the educators reviewed this content, their own expertise and experience played a role in finding the

programming plans. “You know it when you see it,” said P7. P10 highlighted that gathering plans from
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common practice is not independent of the identifier’s own perspective: “there’s a personal selection path

that always happens.”

4.3.2 Discussions

Our interviewees highlighted the importance of collaboration in the plan identification process. “The teamwork

was very helpful,” said P9. Collaboration could involve discussions with co-authors (P1, P2, P3, P7, P9,

P10), co-instructors (P8, P9), TAs (P4, P8), paper reviewers (P5), study participants (P4), other researchers

(P7, P9), and developers in the industry (P8).

These discussions occurred across different stages of the plan identification process including from when

candidate plans are first presented, to when they are refined into their final form or removed from consideration.

While identifying patterns, P9 highlighted that they talked about most of the components of the plan

including “what to name a pattern”, “how to write this pseudocode so it can be generalized to different

languages”, and the difference between language constructs and plans, i.e., “maybe this is not a plan, it’s just

an idea how to do it right.” P1 highlighted that they deliberated about which plans to include in their final

inventory: “we just talked about them, be like, “Yeah, that’s really kind of arcane. Maybe that’s not a general

purpose pattern.” or “Oh yeah, that makes a lot of sense.”

4.3.3 Literature Review

Almost all of our participants conducted a literature review to take inspiration from the existing patterns

and tailor it to their vision. “Having a bunch of literature of course helps a lot,’ ’ shared P8. “We also took

those [plans from literature] because they were broadly researched, people talked about it, so we had some

benchmarks.”

But finding a plan in the literature wasn’t always the end of the search. P8 shared that they don’t take

plans from the literature as the final word.

Someone telling you this is a good candidate for a programming plan, you still have to think, is it

still a programming plan? Or maybe not. Is it only for this particular context? (P8)

4.3.4 Individual Design

All of our interviewees have teaching experience, and most of them have had long careers as instructors (see

Table 3.1). Instructional expertise helps the plan identifier with aspects of plan identification related to

transmitting programming plans effectively to an audience of learners. As “plans are useful only if they can be

communicated between humans” (P1), it’s important for plans to be appropriate for the knowledge level of the

audience. One of our interviewees also highlighted that a plan identifier needs to have relevant programming

background or find it in someone else: “...you need some experience in that practice or the ability to have

discussions with people who have that experience” (P10). These instructors believed that only those with

expertise in a programming topic could shed light on the crucial issue of code’s intent. As P4 described such

knowledge: “Is this a pattern or is this just a construct of your language? Is this an unfortunate oddity of

syntax, or is this actually something that means something to you in your domain?”

Thus, one of the techniques employed by our interviewees was to draw on their experience in order to

come up with plans on their own. By considering important problems and exploring “how you would imagine

best solving the problem” (P9), the instructors generated first draft programming plans they could refine
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and use in instruction. Envisioning assignments at the appropriate level and inferring relevant plans was a

similar strategy for some: “just also thinking about what’s an interesting ten line program that you can assign

students to write.” (P1) “Now what other simple problem do I want?...Okay, let’s try to encapsulate that as a

pattern” (P6)

With this strategy, the instructors used their own expertise to replace a search through the literature or

example programs: “I knew that’s the way you solved the problem so, in a way, I didn’t need any kind of

evidence.” (P6)

4.4 Challenges

While our participants had all successfully identified programming plans to be used in an educational context,

they did name some challenges they experienced in their process, or imagined challenges for future plan

identification.

4.4.1 The Challenge of Choosing Plans from Practice

While our participants had ready access to resources that could be used to identify plans, like example

programs and problems, they still found it onerous to translate this practice into plans. As P7 described,

“the challenge was trying to infer general characteristics from a large collection of specific examples.” Another

participant described this part of the process as “tedious” (P1).

This challenge is particularly relevant when educators “mine” plans from existing materials, a technique that

the vast majority of our participants employed during plan identification (see Section 4.3.1). Understandably,

determining which aspects of a given example are widely applicable enough to “count” as a programming

plan is a difficult task, as the possibilities for writing programs are so extensive. Currently, plan identifiers

lean on a combination of their own expertise and a manual search of examples as they tackle this challenge.

4.4.2 The Challenge of Finding the Right Abstraction Level for a Plan

Once plans are chosen, the challenge only begins. As mentioned previously, finding the right amount

of abstraction is key in identifying good plans, according to computing educators. However, finding the

appropriate balance of specific and general was a hurdle in our interviewees’ plan identification process.

The difficult part is probably defin[ing] the level. What’s the plan you are looking for, how general

it is. Level of generality, abstraction to define it. (P2)

P7 illustrated their challenge by describing the conflicting goals of this process: a good plan should be far

enough above the level of code that it really does insulate students from syntax and mechanics, but not so

far that it becomes useless. Currently, educators make use of discussions with colleagues as one approach to

manage this difficulty. On an even longer time frame, they may also refine their plans after seeing how they

work in the classroom.

4.4.3 The Challenge of Identifying Plans in an Unfamiliar Domain

Identifying programming plans from more programming topic areas beyond introductory programming could

enable better support of learners with diverse interests. However, when we asked our participants about
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how they would identify programming plans in a new and unfamiliar domain, nearly every one said that it

would be quite challenging. Our educators were quick to emphasize the importance of having programming

expertise in the relevant topic when performing plan identification. “Looking for material and try to recognize

the schema without having expertise in the area, I think that would be impossible,” said P2.

The key hurdle our participants anticipated in identifying plans from new domains was not finding

common code, but understanding if that code implemented a meaningful goal. The task of identifying plans

for educational purposes is multifaceted: it involves understanding “what goals [students] need to achieve in

this particular context” and “how much do they know at this point in their instruction” (P3). While educators

might understand what students are ready to learn, they cannot understand the important subgoals and

tasks of a programming domain without the relevant expertise.

Several participants suggested collaborating with an expert from the relevant domain to understand the

“typical things [experts] need to do and how [those are] typically done (P2). This discussion was necessary

to “discover the intent behind code” (P1), which is challenging to discover from looking at code alone. Some

of our educators mentioned that using emerging AI tools like GitHub Co-Pilot (P6) or ChatGPT (P7) to

generate solutions may also help with plan identification when plan identifiers lacked the relevant expertise.
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Chapter 5

Discussion

In the prior section, we answered RQ1: What are the components, characteristics, and challenges relevant for

the plan identification process? This section focuses on the implications of those results.

5.1 Educators Must Balance a Variety of Interconnected Values

During Plan Identification

Based the findings presented in Section 4.2.3, the right level of abstraction was a key characteristic that helped

educators determine the quality of a plan. In Section 4.4.2, we also acknowledge that creating a suitable

level of abstraction was a challenge that most of our participants encountered. Educators identifying plans

aren’t the only ones to face this challenge. In their study of a system for capturing developers’ programming

strategy knowledge, Arab et al. found that developers had difficulty “finding the right scope for their strategy”

to share with others [56].

Synthesizing our interviewees’ responses yields insight into why finding that correct level of abstraction is

so difficult: A plan’s level of abstraction directly impacts three other desired characteristics, some positively

and some negatively (see Figure 5.1). In essence, plan identifiers are performing a balancing act between a

plan’s commonality, usability, and appropriateness for their students.

Abstraction level has a direct connection with the commonality of a plan. When a plan is more general, it

Figure 5.1: Relationships between the characteristics educators value when judging quality of programming
plans for instruction.
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will be seen in practice more often. However, abstraction level has an inverse relationship with how usable a

plan is. The less specifically a plan is defined, the more interpretation a programmer needs to use to put the

plan into use. For instance, with a more abstract plan, programmers have to make more implementation

decisions on their own when they put the plan into practice.

The level of abstraction of a plan has a negative relationship with how appropriate it is for beginners,

an important concern for educators specifically. While learners can benefit from instruction about abstract

principles [57], novices have more difficulty applying more abstract representations [58]. Novices have less

familiarity with programming, and therefore programs that an expert sees as similar may be seen as distinct

by the novice.

5.2 Plan Identification for Education Requires More Than Finding

Common Pieces of Code

As we note in Section 4.3.4, experience with the relevant programming domain as well as having instructional

expertise is necessary in the process of plan identification to accurately identify useful plans suitable for

learners. These types of expertise appear to be complementary yet distinct. Attempts to glean programming

plans from domain experts alone seem unlikely to be successful without instructional expertise. When Arab

et al. studied developers’ ability to share strategic knowledge, about half of the developers they studied found

it difficult to write strategies in a way that novice developers could understand [56].

Simply knowing that a piece of code is common in practice does not solve the problem of plan identification.

While this may be a good starting place, instructional and programming expertise is necessary to create

a quality programming plan. Those with programming expertise can answer questions about whether the

pattern is a meaningful problem-solving step in the domain, and what the goal and intent of the code is.

Those with instructional expertise can answer questions about whether the current form of the plan is

understandable and usable by students with a particular background. Human expertise is a valuable, and

possibly indispensable, part of the plan identification process.

5.3 LLMs May Provide Opportunities to Support Programming

Plan Identification

By providing a more precise understanding of how plan identification is currently performed by educators, as

well as the barriers in the current process of plan identification, our interviews highlighted opportunities to

leverage generative AI tools like ChatGPT for improving educators’ process for plan identification.

A key challenge mentioned by our participants was how plan identification requires a lengthy and tedious

process where the instructor needs to get familiar with many example programs for the domain they are

working in. The time-consuming nature of creating a representative, general-purpose programming plan from

many examples slows the process of plan identification for educators. In order to support the challenging

process of identifying common examples, a plan identification system can generate candidate plans by searching

relevant pools of code for common pieces of code. Large language models, which are trained on large corpora

of code and include data from many example programs, have been shown to perform reasonably well on

code generation and interpretation tasks [15], [44]. Thus, LLMs may be able to provide a starting point for

instructors by presenting them with potential plan candidates.
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Moreover, LLMs may be able to allow instructors to identify plans in unfamiliar domains by presenting

them with plan candidates from those domains. A system that acts as a collaborator for the instructor might

expedite the domain-specific plan identification process significantly. Through such a system, an instructor

can obtain initial plan candidates in any domain and refine those plans such that they are appropriate for

learners. This approach could make it possible to greatly expand the number of domains where the plans can

be used for instruction, as it would no longer require a single person to have both instruction expertise and

in-depth domain knowledge.
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Chapter 6

LLM Plan Generation Methodology

To enact the opportunities described in Section 5.3, we explored the extent to which large language models

can contribute to the plan identification process. To this end, we developed an automated ChatGPT pipeline

(see Figure 6.1) to generate plan-ful examples, which we define as examples of programming plans in use, with

all plan components identified (see Section 4.1). Specifically, we focused on web scraping with BeautifulSoup

as our domain, since prior work has identified it as an area of interest for novice programming learners [7].

Later, we also generated plans in the domains of data processing and analysis using Pandas, visualization

via Matplotlib, and machine learning using TensorFlow. Although in this section we focus on describing

the methodology for plans in BeautifulSoup, we use the same pipeline for plan generation in the other

aforementioned domains.

6.1 Generating In-Domain Programs

Our participants reviewed example programs (Section 4.3.1) and conducted literature reviews (Section 4.3.3)

as key parts of their plan identification process. Inspired by this, we used Open AI’s GPT-4, a state-of-the-art

large language model for code generation that is trained on a large corpus of computer programs [59],

to generate candidate programs along with its respective plan components in the programs. First, we

prompted the model to generate 100 use cases of using BeautifulSoup. Subsequently, we asked the

model to write pieces of code that use BeautifulSoup to achieve <use case>. This collection of

Figure 6.1: The three stage process for generating example programs, segmenting them with plan components,
and clustering these plan-ful examples.
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100 example programs (which we refer to as D) was used as our primary dataset for further analysis.

6.2 Segmenting Programs Into Plan-ful Examples

We used the generated programs from D as the input in a set of prompts (see Stage 2 in Figure 6.1), where

each prompt was used to generate one of the plan components identified in our interview study (Section 4.1).

6.2.1 Extracting Goals and Solutions

Originally, GPT-Generated programs in D typically included a comment before each line, which described

that line’s functionality. However, these comments did not capture the high-level purpose of the code, as

required by a plan goal. To generate more abstract goals for a piece of code, we defined subgoals as short

descriptions of small pieces of code that do something meaningful in a prompt and asked the

LLM to highlight subgoals as comments in the code. The output from this prompt was a modified

version of each program from D, where blocks of code are preceded by a comment describing the goal of that

block.

We split each complete program into multiple segments based on these new comments. Thus, the subgoal

comments from each complete program in the modified D became a plan goal, and the code following that

comment became the associated solution. Each goal and solution pair was added as a single unit of data in

our plan-ful example dataset, DPlan-ful.

6.2.2 Extracting Changeable Areas

To annotate the changeable areas for a plan, we defined changeable areas as parts of the plan that

would change when it is used in a different context in our prompt and asked the model to return

the exact part of the code from the line that would change for all code pieces from DPlan-ful. This

data was added back to DPlan-ful.

6.3 Clustering Plan-ful Examples into Plans

We used a clustering algorithm to group similar plan-ful examples together as a candidate programming plan.

For clustering the code pieces, we used the CodeBERT model from Microsoft [60] to obtain embeddings for

each code piece in DPlan-ful and applied Principal Component Analysis (PCA) [61] to reduce the dimensionality

of the embedding vectors while preserving 90% of the variance. These embeddings were clustered using the

K-means algorithm [62]. The optimal number of clusters K (K = 210 for BeautifulSoup) was determined

by assessing all possible K values using the mean silhouette coefficient [63]. We assigned each example in

DPlan-ful to a cluster of similar code pieces.

6.3.1 Extracting Names

To generate names for the plan-ful examples, we first defined the properties for a name in the prompt by

expressing that a name reflects the code’s purpose and it should focus what the code is achieving

and not the context. Then, all code snippets from each cluster of examples were provided as input to the

LLM along with a prompt asking it to devise a name for that cluster of plans.
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Chapter 7

LLM Plan Generation Evaluation

To evaluate the plan-ful examples in BeautifulSoup created by generative AI tools, we performed a mixed

methods evaluation guided by the characteristics instructors use to judge good programming plans (see

Section 4.2).

We assessed our programming plans in reference to a set of programming plans identified and used by

Cunningham et al. [7] to teach web scraping to undergraduate conversational programmers. These plans were

designed by researchers with programming plan expertise as well as instructional experience in the domain,

and were also validated with web scraping experts [7]. To obtain a control set, we extracted the same set of

plan components (name, goal, solution, and changeable areas) from the publicly available curriculum1 and

created clusters of plan-ful examples (denoted as DControl).

We also subsampled the generated plan-ful examples in DPlan-ful to have an equivalent number of examples

as the control set. To achieve this, we chose the 10 largest clusters with the most data points and calculated

the centroid of each cluster using the embeddings. We then selected the four closest plans to this centroid as

the most representative examples in each cluster (compiled together as DPlan-ful*).

However, as discussed in a prior section 2.1, very few researchers have identified plans in application-

focused domains. This gap leads to a lack of the availability of control datasets for Matplotlib, Pandas, and

Tensorflow. Thus, we perform a cross-domain analysis of the quantitative results of each of these domains,

keeping the BeautifulSoup outcomes as a baseline.

We also crawled Stackoverflow to scrape code pieces in all domains: BeautifulSoup, Matplotlib, Pandas,

and Tensorflow. Stackoverflow is a popular interaction platform for developers that provides its users with a

space to ask questions about code and receive expert responses [64]. We believed that oftentimes, one specific

query is representative of a code piece achieving a particular goal. Consequently, this led us to believe that

scraping Stackoverflow would yield code pieces that could be considered similar to programming plans. We

then performed a domain-wise comparitive analysis between the GPT-generated plans and the code pieces

from Stackoverflow for all domains. Nonetheless, both these approaches are extensions desgined to overcome

the shortcomings of the absence of control datasets; its results are not definitive and can only be used as

inferential evidence.

1runestone.academy/ns/books/published/PurposeFirstWebScraping/index.html
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7.1 Quantitative Analysis

7.1.1 Syntactic Validity

Before comparing DPlan-ful* to DControl, we tested the syntactic validity of the generated programs from our

original dataset D. We note that from our set of 100 complete Python programs in BeautifulSoup, all but

one were syntactically valid. That program included a syntax error and could not be parsed nor executed. In

the 100 Python programs from Tensorflow, two files contained syntax errors leading to compilation failures.

In the set of 100 Python programs for Matplotlib and Pandas all files were syntactically valid. Thus, we

conclude that the raw code generated by the LLM is mostly accurate and reliable, at least in our target

domains.

7.1.2 Appropriateness for Learners

Our instructors emphasized the importance of plans being suitable for their learner audience (Section 4.2).

Thus, we compared DPlan-ful to DControl with standard code complexity metrics to determine their suitability

for novices: non-comment lines of code, cyclomatic complexity [65], Halstead volume [66], and cognitive

complexity [67].

Table 7.1 shows the mean value for all metrics across the datasets. For all metrics, a lower value

indicates a simpler program that is more appropriate for beginning learners. We also conducted a two-sided

non-parametric Mann-Whitney U-test [68] for each complexity metric.

For Beautifulsoup, while DControl is marginally less complex compared to generated code according to

the metrics, we did not find any statistically significant trends (p > 0.05 for all comparisons). Thus, it is

reasonable to claim that the examples generated using ChatGPT can be used in instruction for novices.

Due to the absence of a control dataset, it is difficult to consider the individual nuances of the other

domains (Matplotlib, Pandas, and Tensorflow) while analyzing the metric results. However, we can draw a

cross-domain comparison between the examples in DPlan-ful and the other domains as suggestive evidence.

In comparison to Beautifulsoup, the plans for Matplotlib are shorter, the Pandas plans are equivalent and

the Tensorflow plans are substantially longer. The plans in Matplotlib and Pandas are seemingly much

less complex than BeautifulSoup (accounted by the large difference between their cognitive complexity and

cyclomatic complexity scores) despite being more dense in terms of their Halstead volumes.

To bridge the gap created by the lack of control datasets for Matplotlib, Pandas, and Tensorflow, we

also scraped data from Stackoverflow, referred to as DStack, for all of the domains and analyzed them

relative to DPlan-ful* (summarized in Table 7.1). As mentioned before, we believed that the code snippets

on this platform would be similar to programming plans. On the contrary, we find that the code pieces on

Stackoverflow are much longer accross all domains evident by the difference in the values of the mean lines

of code. The values for the other complexity metrics are also substantially larger, however, that could be

attributable to the code being longer. All p-values computed after the comparison (DStack vs. DPlan-ful*) of

each metric in all domains were statistically significant (p > 0.05) reinforcing these findings. In any case,

we infer that using code directly from Stackoverflow would not be suitable for novices and the code will

likely have to go through a refinement process to be crafted as a “plan”. Moreover, datasets directly sourced

from Stackoverflow would not be considered adequate control datasets in light of the disconnect between the

properties of programming plans and the characteristics of code on Stackoverflow.
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Table 7.1: Mean Code Complexity Metrics. The - represents the absence of data for that column.

Domain Metric DPlan-ful) DPlan-ful* DControl DStack

BeautifulSoup

(n = 781) (n = 40) (n = 43) (n = 94)
Lines of Code 2.30 3.10 2.72 14.20

Cyclomatic Complexity 2.43 2.21 2.40 4.20
Halstead Volume 173.69 178.91 114.02 742.13

Cognitive Complexity 0.217 0.375 0.233 1.83

Matplotlib

(n = 668) (n = 40) - (n = 422)
Lines of Code 1.79 1.525 - 17.14

Cyclomatic Complexity 2.09 2.03 - 3.28
Halstead Volume 197.31 115.59 - 1638.37

Cognitive Complexity 0.016 0.000 - 0.70

Pandas

(n = 680) (n = 40) - (n = 198)
Lines of Code 2.11 1.8 - 16.35

Cyclomatic Complexity 2.07 1.96 - 2.82
Halstead Volume 205.75 54.79 - 1371.24

Cognitive Complexity 0.039 0.000 - 0.40

Tensorflow

(n = 854) (n = 40) - (n = 184)
Lines of Code 3.21 3.375 - 16.52

Cyclomatic Complexity 2.07 1.96 - 3.10
Halstead Volume 372.48 273.05 - 1496.80

Cognitive Complexity 0.064 0.000 - 1.83

7.1.3 Usability

Aside from generating code that is accurate and appropriate for learners, it is also important that programming

plans be representative of key functionalities in the domain. To this end, we compared the number of distinct

method calls used in DPlan-ful and DControl. Having examples on more distinct methods may indicate a set

of examples that can be employed to solve a larger number of problems.

DControl included four distinct method calls (append, find, find all, get), which were also included

in DPlan-ful*, the plan-ful examples from the 10 largest clusters generated by the LLM, such as select and

select one. Moreover, these largest clusters also included five additional methods not included in DControl.

This shows that our pipeline generates plans with similar functionality to those designed by an instructor.

Due to the absence of instructor generated plans for Pandas, Matplotlib, and Tensorflow, we were unable

to quantitatively analyze the usability of GPT generated plans in these domains.

7.1.4 Commonality

A significant motive for using programming plans in instruction is to equip novices with the necessary

technical skills to contribute to real-world code problems. Thus, it is essential that plans used in instruction

are representative of actual practice. To obtain an estimate of how the LLM-generated plan-ful examples

compare to actual practice, we compared DPlan-ful and DControl to web scraping files from GitHub. We

created a new dataset DGitHub by collecting Python files from public repositories via GitHub’s API that met

the following criteria: contained a BeautifulSoup import statement, included the BeautifulSoup contructor,

and was not a test file. This resulted in the final dataset with 733 files. Then, we generated the embeddings

for these programs using CodeBERT in a similar manner to Section 6.3 to compare the sets DGitHub and
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Table 7.2: Scores for Hausdorff and Wasserstein Distances Between Various Datasets. The - represents the
absence of data for that column.

Domain Metric
DGithub &

DPlan-ful*
DGithub &
DControl

DGithub &
DStack

BeautifulSoup
Hausdorff 13.66 14.92 6.85
Wasserstein 12.97 13.97 9.77

Matplotlib
Hausdorff 16.14 - 11.80
Wasserstein 14.06 - 10.25

Pandas
Hausdorff 14.03 - 7.62
Wasserstein 12.88 - 8.77

Tensorflow
Hausdorff 13.30 - 10.83
Wasserstein 12.80 - 10.57

DControl as well as DGitHub and DPlan-ful*.

To evaluate the similarity between sets, we computed Hausdorff distance [69] and Wasserstein distance [70],

which are common metrics for comparing generated content to reference sets [71], [72]. For both Hausdorff

(DPlan-ful = 13.66, DControl = 14.92) and Wasserstein (DPlan-ful = 12.97, DControl = 13.97) distances, the set

of generated examples for Beautifulsoup had a smaller distance to code from GitHub in comparison to the

control set of previously proposed plans, conveying that the ChatGPT can generate plan-ful code that is

more representative of real-world examples compared to instructor code.

For the other domains, similar to the analysis with the complexity metrics, we perform a cross-domain

analysis where we compare the results of the GPT-generated plans of Matplotlib, Pandas, and Tensorflow to

the results of GPT-generated plans of BeautifulSoup to derive inferences about their commonality scores

(summarized in Table 7.2). Pandas and Tensorflow have similar scores for both metrics, thus it is resonable to

claim that the GPT-generated plans are still representative of real-world practice. On the contrary, Matplotlib

has a larger value for both distances so the GPT-generated plans could potentially have more variability.

Similar to evaluating usability, we also draw a comparison between GPT-generated plans and code

collected from Stackoverflow for each of the domains. We find that the code on Stackoverflow is closer to the

code on Github by a large difference; implying that the code on Stackoverflow is more representative of code

used in practice. However, like usability, the difference in the number of lines of code in Stackoverflow and

GPT-generated plans could be a confounding feature. A larger code piece would undoubtedly form a larger

coverage of the code on Github; leading to a smaller Wasserstein or Hausdorff distance.

7.2 Qualitative Evaluation

To obtain a richer picture of the strengths and weaknesses of plan generation with LLMs, we conducted a

qualitative evaluation of the generated plan-ful examples, inspired by thematic analysis approaches in prior

work on code generation [73].

We started our analysis with a free-form discussion on both generated plans and previously proposed plans

from DControl to familiarize ourselves with the data. One member of the research team prepared an initial

codebook, with codes organized under two main dimensions reflecting the components and characteristics

highlighted in Section 4. Two researchers coded a subset of examples (10% of the data) and obtained

inter-rater reliability of 0.76 using percentage agreement[74]. The codebook was refined through discussion,

and two researchers achieved an IRR of 0.89 after the second subset. One member of the team coded the rest
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response = requests.get(url) 
soup = BeautifulSoup(response.text, 'html.parser')

Retrieve and parse the HTML page

CountName:

Changeable Areas:

counter = 0
for item in collection:
    if ...:
        counter += 1
... counter # share result

Plan-ful example #1:

Find how many items meet a criteriaGoal:

......

Retrieve and Parse Webpage ContentName:

Goal:

Solution:

response = requests.get(url) 
soup = BeautifulSoup(response.text, 'html.parser')

Send a GET request to the URL and parse the response 
into an HTML document

Goal:

Solution:

Plan-ful example #2:

Changeable Areas: 'html.parser'url

Changeable Areas: url

Figure 7.1: Two LLM-generated plan-ful examples from the same cluster, with an example almost identical
to an instructor-generated plan from prior work (top), and an example that includes technical jargon and
improbable changeable areas, making it potentially confusing for novices (bottom).

of the data according to the refined codebook2.

7.2.1 Components

The generated plan-ful examples were ‘mostly accurate’ (90%, n=36). Only four examples in DPlan-ful* had

‘mostly inaccurate’ code, indicating that LLMs can generate the solution component of a plan reliably.

Changeable areas of the examples were also somewhat successfully generated: there was only a single case

where an unalterable part of the code was annotated as a changeable area. Yet, 22.5% of examples were

missing changeable areas (n=9), and another 22.5% had changeable areas that were considered ‘improbable’

(n=9). For example, some default arguments of the commonly used functions were annotated as changeable.

While technically correct, these areas are not likely to be modified in simpler examples and were not included

in previously proposed plans from DControl.

The generation of goals and names was less satisfactory. On the example level, more than half of the

generated goals were ‘descriptive’ (55%, n=22), but 17.5% of examples were missing a goal label (n=7),

and 12.5% of examples had an ‘insufficient’ or ‘too general’ goal (n=5). On the cluster level, only 40% of

generated names were ‘descriptive’ (n=4), with other names either being ‘insufficient’ to understand when to

use a plan (n=2) or ‘overstating’ what the plan actually does (n=4). For example, a cluster that accesses

multiple attributes of an object was named “Data Extraction and Database Management”, even though it

does not have any database interaction.

7.2.2 Characteristics

The most consistent characteristic in generated examples was commonality: 80% of examples had ‘common

syntax’ with plans placed in the same cluster (n=32) and 67.5% of them had ‘common goals’ with the plans

in the cluster (n=27). Another 12.5% of examples shared ‘vague commonalities’ (n=5), where it was hard to

find the overall goal of the cluster due to great differences in syntax and structure. Moreover, some code

2The codebook is available online: https://tinyurl.com/fk6pzat8
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statements were repeated in multiple plans (30%, n=12), and the code for shorter plans, such as importing

libraries or calling the BeautifulSoup constructor, was also included within some of the larger plans.

From a usability perspective, most plans were ‘cohesive’ examples of a given use case (67.5%, n=27), and

they were ‘generalizable’ to new contexts (57.5%, n=23). Moreover, some of the shorter plans did not require

customization but could still be useful to students, e.g. “Importing Libraries”.

Finally, the appropriateness of the generated content for beginners was questionable: while there were

similarities to the ones defined in DControl, 42.5% of plans used ‘technical jargon’ in the name and goals

(n=17). These included revealing some web technologies that were abstracted away in the previously proposed

plans, such as GET requests and HTML structure, as seen in Figure 7.1. Furthermore, some plans included

‘advanced concepts’ in Python (15%, n=6) such as list comprehensions or exception handling.
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Chapter 8

Discussion

In this section, we address RQ2: How can LLMs (e.g. ChatGPT) support the identification of domain-specific

plans?

We found that our ChatGPT pipeline can reliably generate common domain-specific code. Our quantitative

and qualitative evaluation showed that generated plan solutions were almost entirely syntactically valid

(see Section 7.1.1 and Section 7.2.1). In addition, the generated code is representative of actual practice

(Section 7.1.4), as shown by similarity to a reference set of plans validated by experts, and comparable

similarity to Github files from the same domain (Section 4.2.1). Moreover, accounting from the similar

number of distinct methods covered in the two datasets, we infer that ChatGPT can generate plans that

capture a variety of use cases in the domain (Section 7.1.3). Furthermore, the complexity of the generated

code appears to be similar to those generated by instructors with domain expertise, indicating that the

generated examples can be appropriate for novices (Section 7.1.2). Overall, using LLMs for early phases in

plan identification by generating common examples and recognizing candidates is a promising avenue.

However, our approach is not consistently able to describe the code appropriately for learners. It especially

falls short on code interpretation, namely, generating other components of a plan such as names and goals.

A number of its generated responses were either overly general or overstating what the code achieved (see

Section 7.2.1). This might reflect the existing challenges for LLMs on in-context learning tasks, observed

by prior work [75]. In addition, ChatGPT sometimes generated technical jargon in the names and goals

(see 7.2.2), which makes those plan components unsatisfactory for novice learners. However, despite these

pitfalls, the generated plan components were somewhat accurate, implying that they may be appropriate

starting points for instructors to refine.

The results yielded by the comparitive examination of the features of the GPT-generated plans with code

scraped from Stackoverflow explained that the code collected by crawling StackOverflow is not suitable to

create candidate programming plans or even control datatsets for evaluating GPT-generated plans. We also

investigated the success metrics of GPT-generated plans of Matplotlib, Pandas, and Tensorflow using a cross-

domain analysis with BeautifulSoup’s GPT-generated plans. All other three domains (Pandas, Matplotlib,

Tensorflow) shared similar numbers for commonality, usability, and appropriateness for learner goals metrics

suggesting that the findings of this study are also applicable to domains other than BeautifulSoup.

Overall, we present suggestive evidence that using LLMs to generate candidate plans as a part of a

plan generation pipeline could reduce the tedium in the identification process by eliminating the need for

instructors to view programs or perform a literature review (Section 4.3.1 and Section 4.3.3) prior to creating
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plans. Instead, LLMs could provide instructors with candidate plans that they would modify for their learner

audience to ensure that the explanatory components are accurate and reasonable. A promising direction

for the design of an automated plan identification system is to foster collaboration between an LLM and

instructors in order to scale domain-specific plan identification.

27



Chapter 9

Implications for Future Work

To date, the field of designing domain-specific programming plans has been relatively restricted due to a

number of concerns. Our findings in Section 4.4 suggest the following reasons: ambiguous definitions of

programming plans and an unclear methodology for designing these plans. With more insight about the

components of a programming plan and its success metrics, we provide instructors with a clear understanding

of the specific constructs of a plan to support them in the identification of plans in more application-focused

domains. As highlighted in Section 4.4.1, with the current process, it is not efficient to identify plans at

scale. A substantial understanding of programming plans contributed by the results of our first study has

significant design implications for the development of a socio-technical system that is capable of identifying

domain-specific programming plans at scale.

In this paper, we focused on the design of an automated pipeline for the creation of programming plans.

However, different parts of this pipeline including subgoal label generation, code commonality computation,

and code abstraction evaluation independently have implications beyond just programming plan generation.

9.1 Components as Constructs

9.1.1 Subgoal Labels

The Subgoal Learning Model devised by Catrambone [76] established that including subgoal labels in code

for instruction is conducive to novice learning by reducing their cognitive load. Yet, their studies and results

were restricted to a mathematical context. Margulieux et al. [77] take a step further and study the effect

of subgoal labels in computer science education specifically, highlighting that the subgoal label scaffolding

indeed leads to improved learning outcomes. Morrison et al. [78] and Margulieux et al. [79] also demonstrate

similar results in studies with different introductory computer science tasks. However, very few researchers

discuss how to come up with these subgoal labels and how to evaluate their worth. Our model powered

by LLMs provides a promising avenue for generating subgoal labels for code being used in instruction at

scale. With the availability of such a system at hand, researchers could now explore the specific elements

that should constitute a subgoal label and also their success metrics.
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9.2 Evaluation Metrics

Our approach to computing the commonality and abstraction levels of code pieces takes a step forward in

evaluating new properties of code having implications in a broader spectrum of instructional design practices.

9.2.1 Outcomes of Computing Commonality of Code

Based on our survey of the literature, the space for determining the commonality of code has been relatively

unexplored. Existing techniques including code similarity software like MOSS [80] and JPlag [81] revolve

around finding a combination of exact or slightly modified structural, semantic and syntactic similarities [82].

According to Lee et al. [83], these tools fall short on detecting behaviorally similar code. Our pipeline offers

a straightforward approach for evaluating commonality of programming plans that can easily be adapted and

generalized for other code purposes. It could be used as suggestive evidence for code that may not look alike

but is similar in terms of its purpose. This finding has potential implications in the field of computer science

education for improving instructors’ ability to understand whether their instruction is authentic [84]. Namely,

with the supported of our pipeline, the instructor-designed code examples could be tested for authenticity via

comparison with code representative of real-world programming practice.

9.2.2 Outcomes of Computing Abstractness of Code

The concept of abstraction has evolved with different perspectives in the literature. At present, there have

been studies examining the importance of abstraction in learning in computer science [85], [86] and how

students perform on abstracted computer science tasks [87], [88], but there has been little work exploring

a substantial computation of abstraction levels of code. Using the findings from our interview study, we

established that other metrics of evaluation: commonality, usability, and appropriateness for learner goals

share a relationship with the level of abstraction of code. Analogous to the results of behavioral science

work that established abstract concepts required a greater reinforcement effort and yielded in more errors

([58], [89]), in Section 5.1, we theorized that it is more suitable to incorporate detailed plans for novice

instruction. We also speculated that more abstract plans would be more commonly seen in practice but would

require more effort from the user to adapt it to their needs. With our contribution of a more comprehensive

understanding of the abstraction level of code and a design explaining the computation of similarity, usability,

and suitability for novices to compute the abstraction score of code, we present a promising direction for

future work on assessing the abstraction skills of students.

9.2.3 Need for Quantitative Measures Appropriateness for Novices

In our proposed pipeline, we implemented the use of existing metrics [65], [67] for evaluating code suitability

for beginners. However, these metrics solely measure the code’s properties; there is no quantitative measure

of a plan’s suitability for novices. Using open-book coding analysis for our qualitative work for this measure

was suitable because of its smaller scale. To design an effective system that can support instructors refine

plans, there is a need for a robust quantitative measure of suitability. A viable approach would involve

implementing the framework of Cognitive Complexity of Computer Programs proposed by Duran et al. [90].

They move beyond software engineering metrics of measuring code’s difficulty into exploring the cognitive

complexity of given code. However, the proposal is theoretical and there is a need for the design of a system

that would enable this theoretical proposition.
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9.2.4 Need for Alternative Measures for Usability

Our methodology for analyzing the usability of generated plans was completely dependent on our control

dataset of prior identified plans in the domain. However, seeking control datasets for newer domains would be a

considerable challenge keeping in mind the sparse identification of plans in application-focused domains. There

is a need for finding alternative measures of usability of plans for designing a system that can successfully

support instructors in plan refinement. One potential direction is exploring the complexity of a plan’s

changeable areas. As mentioned in Section 4.1, changeable areas are the parts of the plan that would change

when used in a different context. An abundance of changeable areas in a plan would be indicative of the

large scope of the plan’s adaptability for different contexts. However, the presence of too many changeable

areas would also make it difficult for novices to adapt the plan to their needs. Thus, there is a need of finding

the right balance of the number of changeable areas in a plan for it’s ideal usability levels. Consequently,

insight from the percentage of changeable areas of a plan would be suggestive of its usability scores. Similar

to the proposal for appropriateness for novices, we note that our system only provides an initial step for

understanding the usability of a plan. Before integrating the system-generated plans in instruction, there

is need for future work testing the usability of the GPT-generated plans by giving them to students and

assessing their performance on using the given plans.
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Chapter 10

Conclusion

The current state of the art in programming plan identification is a black-boxed lengthy manual procedure.

With a more transparent, efficient, technologically-supported plan identification process, educators may be able

to use programming plans in their instruction for a wide range of subjects beyond introductory programming.

In this study, we gathered concrete details about the current state of the art in plan identification processes

to understand what plan components instructors seek, what metrics they use to judge success, and where

they face challenges. Then, we explored the use of ChatGPT as an aid in the plan identification process and

found that it could generate candidate programming plans with significant similarity to instructor-designed

plans, however, many of the plans’ explanatory components were not well attuned to the needs of beginning

learners. We also establish a need for future studies to examine the generalizability of these results in domains

other than BeautifulSoup using our proposed design of the computation of the success metrics. Nevertheless,

these results suggest that the way forward in plan identification across domains should involve collaboration

between LLMs and instructors.

As computing educators are tasked with teaching an increasingly diverse set of learners with widely

varied interests, we believe that a plan identification system that utilizes large language models can support

instructors develop instructional material that is not only based on the psychology of programming, but also

more tailored to their students’ interests in a diverse set of domains.
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